SACCOGLOSSUS APANTESIS, A NEW SPECIES OF ENTEROPNEUST FROM SOUTH AUSTRAIJA

By 1. M. Thomas ${ }^{\circ}$

[Read 10 Nov. 1055$]$

Abstract

SUMMARY chissus anantesis. This is the first reegrd of this gemus in Anstradia and the first crtcmopnenst to be aleseribed from South Australia.

I. INTHODUCTION

Enteropneusts already recorded from the Australian continent include Bulanoglossws uustraliensis (Hill) found near Sydney (Hill, 1894); Ptyohodera flava Escholtz ($=P$ t. pelsarti), from the Abrolhos Islands (Dakin, 1916) and P. flava and B. carnosus (Willey) From the Great Batrier Reef ('Trewavas, 1931). Trewavas also deseribed a number of tomaria larvae from the same region which have not yet been associated wilh specific adults. The present author has identified a single specumen sent to him from the Great Barrier Reef as Glossobulanus hedleyi (Hill) first described from Funafuti (Hill, 1897). In 1899 Benham described Saccoglossus otagoensis (Benham) from Otago Harbour, New Zealand.

The fors to be described herein is found on the shores of Encounter Bay, South Australia (lat. $35^{\circ} 35^{\prime}$ South, long. $1.38^{\circ} 36^{\prime}$ East) about fifty miles she south of Adelaide. The foreshore in this region consists of an extensive platform of a sandy Permian fluvioglacial stratum. The platform extends about one hundred yards offliore, sloping gradually seawards and dropping abruptly into deeper water at its outer edge. It is largely overlaid by a deposit of coarse sand, shell grit and some mud, which supports a thick growth of Posidonia, Cymodocea and Zostera. The first two of those plants cover most of the platform, whilst the latter is found in sballow water near its shorewards edge. Here the rock surface is pitted and dented to form basin-shaped depressions where the soil may lie to a depth of six to twelve inches, though in much of the arca investigated the soil is no more than half this depth. This part of the coast is protected in part, to the west by Rosetta Head ("The Bluff") and offshore, to the south, by Wright Island, about half a mile away. Both these are granitic outcrops. The region is thus normally one of more or less quiet water.

The animals arc found in the upper two or three inches of soil which is lightly bonded by Zostera roots. They have not as yet been fonnd other than in assoeiation with this plant. Other animals fontind in the samo habitat include Maldanid and other polychaete worms, some burowing ennstacea (Callianasa ccramica and Crangon novozelandiae), several burrowing lamellibranchs and oceasional sipunctulds and vemortines. The enteropneusts are extremely localised in their ctistribution. Although a considerable area of the foreslore has been examined by digging and sieving, they have been found only in three small regions, each not more than two square yards in extent and all about the same distance from high water mark. The regions are exposed at very low spring tides. The restricted distribution of the animals might be accounted for by

[^0]the pitted mature of the underlying rock which might tend to limit their lateral movements. In these regions, however, several specimens an be thrned up in a single spradeful of soil. The animals are frequently so tangled in with the Zostore root-systems that it is almost impossible to obtain complete spesimens. The abdominal region in purticular is very fragite and breaks off readily. Brambell and Cole (193日a) have recorded that it is impossible to obtain intact sued mons of Sacuglossza cambrensis because of its fragility.

A single specimen has been found in a similar habitat at Salt Groek near Edithlurg on the eastern coast of Yorke Peminsula. Though this example was pot sectonned it bore all the external characteristics of the Encounter Bay specimens. Salt Creck is, in a direct lirne, about sicty miles north-west of Ennomuter bay so it is likely that further investigation of suitable localities may show the mintal to hove a wide distribution along the South Australian coastline,

When the water is wery still, casts can be seen on the sand surface which are sinilar to those produced by S, cambrensis (Brambell and Cole, 19394). They are in the form of fue coils of sandy material honded together by mucus. They are about a centimetre in diameter and one to one and a half furns in length and very fragile, No lubes bave been mbserved thongh, if presont and Frogile as are the castings, they would be no doubt shattered anong the Zostera routs in the process sof digging and sieving.

The following fatures place the animals in the family Harrimanidac Spencel: (a) lack of hepatic diverticula, (b) lack of synapticulae, (c) lack of lateral septa, and (d) lack of circular muscles in the trink region. 'They agree with the diagnosis of the gems Saccoglossus Schimkewitsch (= Dolinhoglosstus Spengel) in the following points: (a) proboscis very long, (b) collar about as long as lymad, (o) lateral genital ridges present but no dorsal gonads, (d) gonads overlap the gonital region to some extent, and (c) gill pores small but distinet. The specimens differ in several points from the published descriptons of the fourtoen other species of the gemus. so it is proposed to corcet a new species, Saccoglossus apantesis, to include them. The specific name is derived From the Greek word meaning a meeting or an cheotuter, as it was near the place where the animals were first foumd that there necurred the historic enconinter between Matthew Flinders in the "Investigator" and Nicolas Baudin in the "Geographe" in April, 1802

Several detailed acconnts of the anatomy of different species of the genos are available apart from the compenslinm of van der Horst (1927-39), for cxample, S. otagoonsis by Benham (1899); S. infucensis by Kapelus (1936); S. cambrensis by Brambell and Cole (1939a), and S horsti by Brambell and Conelleant (1911). In the description of the present species then, moly those teatures which are characteristic of S. apoutesis will be dealt with Features which it shares with several other members of the genus will, in the main. be-mitted.

II FXTERNAI FEATURES

S. apantesis is a modotately sized species, An adult in the living condition has a length of 70 to 85 mm . This is made up as follows proboscis 90 to 35 mom. collar 3.0 to 3.5 mm : branchial region 10 to 12 mm ; grmital region 15 to 20 ung. (the two balter regino nverlap to a considerablo extent); abdominal region 25 to 30 mm . The genital region in mature specimens is alowas coiled so that the measurements given for this regim can be no more than an estimate.

Youme spocimons are coloured a uniform light orange. Adults have a proboscis of light crange, darkening somewhat at the base and stalk. The collar is orangered with, in larger specimens, a white ring near the posterior margins. The branchal region is palex than the collar though darker than the proboseis. In fermales the genital ridges ate light orange, but in males they are browny red. The lateral and vental body walls in the genital region are similar in colour
to the bratuial region. The abdominal region is pale yellow-grey and translicent so that its emolosed sand grains and grit show readily through. No spotting or llecking with colonir such as has been described in some sther mombers of the genus is present.

The proboscis in the extended condition, tapers from its base to its tip, the tip being about half the diameter of the base. In contracted specimens it is cylindrical. There is muly a very slight indication of a dorsal groove in the posterior quarter or so of its length and this is better seen in preserved and contracted material than it is in living specimens. There is the sign of a ventral proboscis gronve: Oceasionally the proboscis atay show one or more deep, cirenlan coristrictions at varving positions along its length. These are caused by strong local contractions of the circular museles. If a specimen is roughly treated while the proboscis is in this condition, the organ may break at thene points. Autotomy of this kind must occur in natural conditions as very occasional specimons have been found with short probosces showing signs of terminal regeneration.

At the base of the proboseis is the pre-oral ciliary organ whose strueture and significance have been described for S, cumbrensis and some other forms by Brambell and Cole (19390). As in the Welsh species, it takes the form of a horse-shoe-shaped groove, slightly dilated at its free dorso-lateral ends and partially surrounding the hase of the proboscis where it tapers to form the stalk, The organ is not distinctively coloured as it is in S. cambrensis and thereint resemblex more the condition in S. horsti (Brambell aud Goodheatt. 1941).

The nock which unites the proboscis to the collar is as is the case in other members of the genus, very slemeler. It bestrs on its left side the siogle proboscis pore which enable the end sac (Fig. 1), and thas the left dorsal coclomic punch of the groboscis to counmmicate with the exterior. The collar is slightly longer dorsally than it is ventrally and is somewhat fared anterionly. The posterior border is slightly flared also and at the base of this Hare there is a conspicuous circular groove corresponding in position to the white ring mentioned carlier. This groove and white ring are best seen in mature specimens. The posterior flare overlaps the first two or three gill pores.

The branchal region possesses thirty to forty-five pairs of gill pores on its dorsal surface The number apparently increases with increasing size of the animals. The anterior ones are small and alnost circular. They increase in sice to about the sixth pair of the scries and become elliptical laterally. The final seven or cight become rapidly smaller and more circular in form, the ultmate ones frequently being difficult to diseem externally. The latter part of the branchal region is overlapped by the genital region, the first genital pouch appearing usually at about the level of the twentieth pair of gill pores. It is noticeable that in less mature specimens, that is, those with a smaller number of gill pores and less well-developed gonads, the proportion of gill clefts in front of the first genital pouch is higher than it is in more mature specimens. This may be due to the combined effect of an increase in the number of branchial pores posteriorly and an unterior penctration of the gonads with increasing maturity. In mature specimens, the gonads form conspicuous dorsn lateral genital ridges which, in their region of maximal development, that is, in the posterion branchial and ocsophageal regions, comprise about two-thirds of the athimal's total body width (Fig. 8). The ridges begin to decrease sqadually in size in the posterior ocsophageal region and disappear in the anterior abdominal regirm. The iucrease ir bulk of the genital ridges with growth of the animals to matmity leads to a considerable coiling in this part. Between the gill elefts, and farther back between the genital ridges, a slight medio-dorsal elevation of the cpidermis overties the dorsal nerve cord (Fig, 4). This ridge is less cvident in the abdotminal region.

Fige 1,-Longiturlinal sugittal sestion of the base of the probosis. has blood simse eo wallar codone; cep., vollaw epiderms; es, end sac; glor, slomerulus; iens, inmer cireular masole layer of jroboscis; lmp, longitudinal museles of probosols, m., month, ni., berve layer: ocm.,
 oral ciliary organ; pep., proboseis epithelium; ps., proloseis skeleton; st. strmochord; vds... ventral cliverticalom of stomochord.
Fig. 2. I to 14, Serial sections of stomochord and moloseis skeleton at about 0.05 mm . intervals. cr. cmara of proboseis skeleton: Is, lamen of stomoshord; vis., lumen of ventral diverticulam of stomochord; other guide letters is in previons figure.
 blemal vessel, other quike letters its in previous, figures.

Ahrut two millimetres behind the last pair of gill pores the paired iutestinal peres ean be sede on the dorsal surface. They form two rows (Figs. 7 and 8), one on cach side of the mid-dorsal line which diverge at an angle of thity-five to forty degrees from the mid-line. Sis to eight aportures appear on each side. In S. Kowalecskyi (van der Horst, 1927-39) it is reported that the posterion of the four to six pairs of pores present are further from the mid-line than are the untecior ones. Through the kindness of Prof. F. W. Fogers Brambell, the author has been able to examine some specimens of S . cambrensis, In thest, the five to seven pairs of patent pores from lines parallel to the mid dorsal line. A similar conslition obtains in S. inhacensis (Kapelas 1936). No descriptions of He extemal appearance of the intestinal pores seem to be available for other members of the genus.

Ventrally, the trimk region, the main longitudinal musentature of the body is readily identifiable by its fine transverse striations. In the anterio brenchial region, this musculature, thought thicker in the ventral region, extenks upwarks in the latcral body walls nearly to the level of the gill porcs (Fig 4). Farther back, it becomes more concentrated ventrally so that at the posterion end of the branchial region and in the gesophageal region (Fig. 8) it forme twa conspicaous ventro-lateral ridges which taper away towards the end of the genital region but are still visible in the abdominal rcgion (Fig. 5). The ventral nerve cord can be seen modially between the lateral muscle masses througheut the length of the trouk-

The width of the intestinal region of a freshly caught speemen is, noar its antrrior cod, little more than half that of the gevital region even throgh it may be distorided by its centent of sand and shell-grit. It tapers gradually to about hall this width near its postorior extremity, The ventrat lomgithelimal miscle rifgos, though diminishing in size, are visible throughout its length.

The epidemis of the tumk region is mainly glandolar and can be divided into there different types. That in the vicinity of the gill pores is smooth and simitar to that deseribel for S. cambrensis and S horsti. That coverime the ventral and (iu the anterior branchial region) lateral longitudinal muscle hanris has fine transverse elevations which have alrcady been noted above; while that on the remainder of the dorsal surfacer, on the gerital ridges and on the Juterat hody walls, is ruised into small, transversely arranged olliptimat emincuees (Figs. 5 and 7),

HI. INTERNAL ANATOMY

Tho epidermis of the proboseis is between 0.1 and 0.2 mm . thick (tiogs. 1 and 3). The norve layer which lies immodiately under it shows a slight dorsal thiekening whieh, however, is muth less well xleveloped than is the corresponding struthre in S. cumbronsis and S. horsti. This may bre associated with the slighter developmint of the dorsal gronve of the probosecis in S. apantesis. The dorsal (subncural). the two lateral and the sentral blood vessels lie between the nerve layer and the outer layer of circular muscles. The latter is abont equal in thickness to the nerve layer and must be capable of vory forceful wortractions as is indicated hy its ability to autotomise portions of the proboscis. The main bolk of the proboscis tissues is made up of lonuitudinal anuscle fiberes which are arranged in concentric rings, each ring boing separaterl from its neighbours by a layer of loose connective tissite, At least nine or ton of these rings are apparont io all specimens examined (Fig. 3) and oceasionally ther are indications of an eleventh incormplete ring rejresented by a number of scattered longitudinal fibres which lie close to the imer layer of circular muscle fibre which lime the proboscis coelom. Seven to ten such concentric rings have been described in S . mereskowskii and bine or more in S , horsti. Towneds the posterior end of the proboscis, the inner rings becnome indistinct and disappear so that at the levol of the anterior extremity of the proboscis complex, only five or six of them aro readily apparent. The proboscis coelom exteuds nearly to
the anterior extremity of the organ. The glomerulus (Hig 1) surreunds the unterien extremity of the stomochord but farthor back it is timold only ventrally atid laterally to the strmochord.

The stomochord is fairly straight and bleutly roumed anteriorly. In much emontacted specimens, however, it may be comsiderably buckled derso-ventrally. It has a welledoveloped ventral divertichlum (Fig , 1) whide is supported by the biful tip of the probrecis skeleton (Fig. \& (1)). The short, blutit prongs conalesce dersally so that a ventral groove is formed in the skeleton (Fig. 2 (2) and (3)) in which lics the backardly directed tip of the ventral diverticulam. The body of the sheletom narrows to become quite slender in its mid-region but mid donsally in it, anterior part it bears a distinct ridge which penetrates the body of the stomochord (which lies immediately above it) in its mid-ventral line (lig. 2 (3), (4) and (5)). In the hinder part of the body of the skeleton. lateral wings are slighty developed (1ig. 2 (11) ann (12)) but these disappen belone the skeleton bifurcates to form the crura (Fig. 2 (14)). The crova pass "poards, noe on each side of the junction of the stomochord with the lining of the buceal cavity and then arch outwards, backwards and downwards in the Wall of the bucral cavity. They extend about halfway along tho length of the collor and embrace slighty more than half of the circumference of the buccal cavity: The proboscis skeleton has no hard, central emeretions such as becur ifi some specimens of S . cambrensis, nor have such concretions been inted in the branchial skeleton.

Spengel (1893) recognised five transverse zones in the collar epidermis of niteropnensts, each zone boing characterised by certaill cell structures und staining propensities. In S. apantesis all live rones are clearly distinguishable (Fig. 6). The lirst, the anteriormost is a fainfy low epithelinm of eiliated eells which stain lightly with Ehrlich's haenatoxylin. This zone covers the anterior Hange of the collar. The second zone, which is nearly as broad as the other four put together, enntains much material which stains heavily with haematoxylin. Auterinty, where it abuts on the first zone, its cells arc low but they increase in height in the middle region to shorten again towares the hinder margin. Near its anterior margin there is a circular furtow whose depth varies considerably in relation to the degree of longitudinal contraction of the collar. The third zome consists of uarow, elongate cells in which material which stains heavily is concentrated towards their bases. This material does not stain quite as beavily as does that of the second zone. The fourth zone is the narrowest and forms the white line on the collar referrect to previonsly. It bears a deep furrow and its colls contain relatively few doeply-staining particles towards their bases. The fitth zone, like the first is ciliated but forms a much higher epithclium. It forms the posterior llange of the collar which overhangs the beginning of the branchial region.

The general arrangement of these zonos is similar to that in S cordbuicus (van der Horst, 1927-39) and S. koualevskii (Agassiz). In both these species the five zones are distinguisbable. In S, canbrensif, the third and fourth yones are not readily distinguishable while in S. horsti they ure inelistinguishahle. In S inhacensis (Kapelus, 1936) none of the five zones in clarly demarchted.

The number of pairs of gill pores varies between thirly and trity-five. This number is less than is found in most other members of the genus. S. grarreyi approaches it most closely with forty to sixty pairs. The number of pairs of gill $I^{\text {pres }}$ in the remaining species are given in the list of distingnishing features of the rifferent species at the end of this article. The detailed histulogy of the branchial region shows no special distinguishing features. In mansverse section the branchial purtion of the pharysix is seen to be about equal in extent to the not-branchial (Food-groove) portion (Fig. 4).

Thu first genital pouch appears in atout the mid-branchial rekion. Mature oncytes (measured on fixed material) are about 310μ long and about 285μ

Fig. 4.-Transverse section in branchial region. db., dorsal bloodvessel; din., dorsal longitudinal muscle of trumk; the., dorsal nerve cord; er., epibranchial ridge; gp., gill poueh; gpr, gill pore; lm., longitudinal museles of trunk; nbp., non-branchial portion of pharynx; Fig 5, sb, skeleton of gill septum; tb., skelcton of gill tongue; vnc., ventral nerve eord.
Fig. 5.-Transverse section of abdominal region. gl., glandular eminence; vb., ventral bloodvessel; vi, ventral ridge in gut epithelium; other guide letters as in previous figures.
Fig. 6.-Sagittal section of collar epidermis. 1 (anterior) to 5 (posterior), zones of collar epidermis.
Fig, 7.-Dorsal surfacc of oesophageal region showing arrangement of intestinal pores. gr., genital ridge; ip., intestinal pore; other gnide letters as in previous figures.
Fig 8-Trazsverse section of second region of oesophagus. ©e., Tmen of vesophagus; oo., oocyte; other guide letters as in provious figures.
brond. They are thus intermediate in size between those of S. vambrensis (400μ by $30(\mu)$ and S . kowithenskii (375μ) on the one hand and S. hursti (230μ by 170μ) and S. otagoensis (250μ) on the other. Some six to ten mature oocytes apperar in one transverse section as well as a larger number of imptature ones. The latter are usually located medially and dursally in the ovary, that is in the region of the genital pore, while the mature oocytes occupy a more centail or ventral position (Fig. S).

The besophagus has the usual three regions. The first of these has an cpitholium of moderate thickness which is very much folded and is histologically similar to that of the sentral, non-brarichial, part of the pharym. The second region has a thicker epithelium (Fig-8) and it is into dorso-lateral grooves in this region that the intestinal pores open. There are six to eight pairs of these, there beine no medimentary pores such as appear in S. cambrensis. The third region of the oesophagus has a lower cpithelimm than the first remion and this merges imperceptibly into the hepatie region, which, as in other members of the gems. is indistinguishable externally. The gut in the abdominal region (Fig. 5) hat a broad hmen and thin walls. Ventro-laterally the walls are thickened to form two marked parallel ridges, separated by a derp mid-ventral furrow. The ventral musculature in this part of the body is much reduced and there are only very slight traces of the fine bands of dorsal longitndinal muscles which are appatent thronghout the branchial and oesophageal regions.

IV. SPECIFIC CHARACTFRS AND COMPARISON WITH OTHER SPECIES

The specific characters of Saccoglossus apattesis are listed below:
(a) There are between thirty and forty-five pairs of gill clefts.
(b) The gonads start in the mid-branchial region and furin onarked dome katered ridges.
(c) The oncytes are nearly sphorical, measuring about 310μ by 280%,
(d) The ventral. longitudinal museles of the trunk form distinct vemto latoral ridges in the posterior branchial and ocsophageal regious.
(c) There are sis to cight paits of intestinal pores.
(f) The cpidermis of the collar has live distinct zones, the seand of these becing afokest equal in extent to the remaining four added together.
(g) The donsal proboscis groove is but slightly developed in the penterion guartior of the proboscis.
(1) I be longitudimal mosculature of the proboscis is arranget in at least nine or tol complete concentric rings.
(1) The stomochord has a ventral divertientum which is directed shafthy lachsurds und is partially grasped by the bluntly bifid tip of the proboscis skoten.
(i) The crura of the proboscis sketeton extem abont halfway aloug the length of the collar and embrace slightly more than half the simenternee of the fruceal cavity,
S apantesis is Hir fifteenth member of the gemes to be described. It wan hen distinguished from the other specien on the following engatinations of characters:
8. sulewtus (Spongel), J.of. Japan. Deep dorsal shlens by the poohoncis giving it it cresecntic eross sections, ten to cloven puirs of gills.
S, otatochsis (Benham). Luc. New Zealand. Deep dorsal groove on the piolonscis; ten to fifteen pars of gill pores; longitudnal musctes of the proboscis in three or four concoutric rings; gonads extend anterionly to the level of the fouth gill pore; one pair of intestinal pores,
S. pygmaers (IJintichs and Jacobi). Soc. Holigoland. Nine to twenty-two pairs of gill pores; lomgituslinal museles of proboscis not in concentric rings;
gonads begin at posterior extremity of the branchal tegion; one pair of intestinal pores; very small form, about three centimenes long,
S. gurneyt (Robinson). Loc. Suez. Collar nearly twice as broad as Jong; Iongitudinal muscles of proboscis not in concentric rings; forty to sixty poirs of gill pores; modian proboscis pore; gonads begin immediately bohind the collar; intestinal pores absent (${ }^{(2) \text {). }}$
S. carabaicus (van der Morst). Loe. West indies. Longithdinal moseles of the prohoscis not in concentrie sines; mexlian proboscis pores mote than filty pairs of gill pores; gonads begin between the fourth and fifth gill pures
S. bommei (Menon)- Loc. Madras. Longitudinal museles of tho proboncis nom in concentric rings; arua of proboscis skeleton extend to the himper end of the collar: ventral musculature of the tronk region not especially thickgonads legin immediately behind the collar.
S. pusillus (Ritker) Loe. California. Crura of the proboscis skedon evtent to the hinder end of the collar and embrace three-quaters of the cireumferenec of the boceal cavity; about sixty pairs of gill pores; one pair of intestinal pores.
S. mereschkowskit (Nic, Wagner). Loc. North-Eastern Russix. Fifty panm of gill pores; endplate of the proboseis skeleton bears a Iong dersememedian spince collar epidermis very thick (0.5 mmn).
S. mhatiensis (Kapelns). Loc. South-East Atrica. Eighty-two or more maim of gill pores; longitudinal muscles of the proboscis not io eoncentric rings gonads begin at the level of the fourth gill pores; four pais of intestinal pores the first of which has four internal openings.
S. koterlenskyi (A. Agassiz). Loc. Atlantic coast of the U.S.A. A hurdred purs of gill pores; genital folds begin one millimetre behind the collar; only four or five rings dearly visible in the Iongitudinal muscle of the proboseis; fout to six pairs of intestinal pores.
S. ruber (Tattersall). Loe. Wostem Ireland. Longitudinal muscles of the proboscis not in concentrie rings; 10 genital or minsetilat ridges on tho trmk; fifty-six to sixty-four pairs of gill pores.
S. srpentinus (Assheton). Loc. Scotland. Very Jong proboscis and bodye trunk circular in cross section, without genital or muscular ridges, sivty pairs of gill pores; longitudinat muscle of proboscis not in concentric rings.
S. combrensis (Brambell and Cole), Loe North Wales. Trunk circular in cross section without genital or muscular ridges; sixty to ninety pairs of ci!! pores; four to six ill-defined concontric rings in the perifaral parf of the fongitudinal musculature of the proboscis; eight to twelve pairs of intestimal pores, the first three to five pairs being rudimentary. latevtinal pores arranged parallel to the mid-dorsal line
S. Worsti (Brambell and Goodheart). Loc. Southern Englaml, Dursat aml ventral grooves present on the proboscis throughout its length: conads begin within one millimetre of the collar: one hundred to ane lupdred and forty pairs of gill pores four to cight pairs of intestinal pores.

V. REFERENCES

 Enteramenst occuminf in Wakes, Proe. Zoot. Soc London, B, 109, at1-23f\%.
 Enterpmetstas its mecurroncs, structure and possible phylogrontic significance, J'ose, zool. Sone. Toudon, B, 109, i81-193.
 Finmophent aceurring in the Solent, I. Mar, Biol. Ass. U. K., 25, 283-301.
Dakte, W. J, 1916. A new species of Entoropocasta Plychoclera pelsarti from the Abrathos Intanis, Toum, Linn. Soc. Lomton Zoul., 33, S5-100,
 wasi of Nus South Wales, Proc. Minn. Soc, N.S.W. 10, I-42,

Hill, J. P., 1897. The Enteropneusta of Funafuti, Mem. Australian Mus., 3, 205-210 and 335-346.
Horst, C. J. van der, F927-39. Hemichordata. Bronn's Klassen und Ordnungen des TierReichs, Bd. 4, Abt. 4, Buch 2, Tiel 2.
Kapelus, F. F., 1936. The anatomy of the Entcropneust, Saccoglossus inhacensis sp. n., Ann. Natal Mus. 8, 47-94.
Spengel, J. W., 1893. Die Enteropneusten des Golfes von Neapel. Fauna and Flora des Golfes von Ncapel, Monogr. 18.
Trewavas, E., 1931. Enteropneusta. Great Barrier Reef Exp. 1928-9. Sci. Rep. 4, 2.

[^0]: a Department inf Loology University of Adelaide.

